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Abstract

In this paper we describe five paradigms for machine learning — connectionist (neural network)
methods, genetic algorithms and classifier systems, empirical methods for inducing rules and de-
cision trees, analytic learning methods, and case-based approaches. We consider some dimensions
along which these paradigms vary in their approach to learning, and then review the basic methods
used within each framework, together with open research issues. We will argue that the similarities
among the paradigms are more important than their differences, and that future work should at-
tempt to bridge the existing boundaries. Finally, we discuss some recent developments in the field
of machine learning, and speculate on their impact for both research and applications.

To appear in S. Shapiro (Ed.), Encyclopedia of artificial intelligence (2nd ed.). New York: John
Wiley & Sons.






1. Machine Learning and Artificial Intelligence

One central insight of artificial intelligence is that expert performance requires domain-specific
knowledge. Machine learning is the subfield of Al that studies the automated acquisition of such
knowledge. The aim is intelligent systems that learn — i.e., that improve their performance as
the result of experience. Researchers study learning for a variety of reasons: to discover general
principles of intelligence, to better understand human learning, and to automate the process of
knowledge acquisition. However, the discipline is united in its concern with mechanisms for learning,
and methods proposed with one goal in mind often serve other purposes equally well.

Despite its separate identity, there are two important senses in which machine learning is an
integral part of the larger AI field. First, learning researchers must consider central Al issues of
knowledge representation, memory organization, and performance. Second, learning can occur in
any domain requiring intelligence, whether the basic task involves classification, problem solving,
reasoning, natural language processing, or vision. Thus, one can view machine learning as more a

framework for Al research and development than as a subfield of Al

In the following pages, we review the current state of machine learning. We begin by identifying
relevant dimensions along which learning systems differ. Next we describe five different paradigms
for machine learning that have emerged over the past two decades. These include:

¢ connectionist (neural network) learning methods;

o genetic algorithms and classifier systems;

¢ empirical methods for inducing rules and decision trees;
¢ analytic learning methods; and

e case-based approaches to learning.

Despite differences in the representations and algorithms used by these approaches, all aim to
improve performance through the acquisition of knowledge from experience. Moreover, we will
see that they must address many similar issues, and that they share many open problems. After
examining each of these paradigms, we consider some recent developments in the field as a whole
and their potential impact on future research and applications.

One related area that we will not examine is knowledge acquisition (e.g., Marcus, 1988). Like
machine learning, this subfield of Al is concerned with improving performance through the storage
of domain-specific knowledge. However, research on knowledge acquisition focuses primarily on
direct interaction with an expert by asking questions, taking advice, and the like. In contrast,
most work on machine learning emphasizes the acquisition of knowledge through experience with
an external environment or experience with internal problem-solving traces.

2. Dimensions of Machine Learning Research

Before delving into recent research on machine learning, let us identify some dimensions along
which alternative learning paradigms vary. Below we discuss six issues — the representation of
experience, the representation of acquired knowledge, the performance task, the difference between
supervised and unsupervised learning, the distinction between incremental and nonincremental

learning, and the complementary notions of induction and explanation.
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2.1 Representation of Experience

Most learning is based on experience, and this requires a representation for the experiential input
given to the learning system. Researchers have employed three broad classes of data structures, each
with different representational power. The simplest describes each individual experience as a list of
binary features, each corresponding to the presence or absence of some aspect of the environment.
For example, a particular symptom (say jaundice) may be present or absent for a given patient.
Connectionist and genetic algorithms typically employ feature-based input.

A second scheme assumes a known set of attributes, each having a set of mutually exclusive values.
Thus, one might describe an object as blue or red, but not both at the same time. Some attributes
take on numeric values (e.g., length, weight). Attribute-value representations are typically used by
empirical methods, such as those for rule induction and decision-tree construction.

A final approach employs relational or structural representations. These describe relations be-
tween two or more objects, such as the fact that object A is above object B (i.e., arbitrary pred-
icates). Such structural information can be stated in many formalisms, including predicate logic
and semantic networks. Although relational schemes have significantly more expressive power than
the other representations, they also introduce significant complexity into the matching process,
and this affects learning methods that use them. Research on analytic learning typically deals with
relational data structures, as does some work on empirical rule learning and case-based reasoning.

2.2 Representation of Acquired Knowledge

All learning systems acquire new knowledge, and they must represent that knowledge in some
fashion. The choice of knowledge representation is central in that it strongly influences choices of
performance and learning components. In fact, the five learning paradigms we discuss in Section 3
below are distinguished largely in terms of representational issues.

One choice is whether to store individual, concrete experiences or only abstractions based on
these data. Most work on machine learning has taken the latter path, and attempts to move
beyond the data to build more general knowledge structures that summarize previous experience.
Of course, hybrid approaches are possible; these are often called case-based approaches, and we
discuss them in Section 3.5. Note that methods that attempt to store only concrete experiences
must at some point generalize beyond the data if they hope to apply to new experiences. Thus,
the real issue is whether such abstraction occurs aggressively as new experiences are stored (as in
most approaches) or lazily as needed during knowledge access (as with case-based approaches).

For abstract knowledge structures, another choice is whether to use alogical, discrete formalism or
one that involves numeric, continuous information. This is primarily a choice between using logical
connectives or numeric ones, respectxvely Emplncal Tule learning and ar anafytxc Tearnmg methods
have predominantly used the first path, whereas connectionist systems have relied on the second.
Genetic algorithms can be profitably viewed as combining these two formalisms, as can recent
work on probabilistic learning. A related choice is whether to use a aggregated, coarse-grained
representation or a finer-grained one. These options are sometimes referred to as “symbolic” and
“subsymbolic” representations, respectively. Conventional wisdom associates the former scheme
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with empirical and analytic methods, and associates the latter with connectionist and genetic
approaches. However, as we argue in Section 3.6, these associations are more myth than fact.

2.3 The Performance Task

Learning involves improvement in performance, and thus learning cannot occur in the absence of
some performance task. The vast majority of machine learning research has focused on two broad
classes of domains — classification and problem solving. Each has led to different concerns, distinct
insights, and unique applications.

Intelligent agents are repeatedly confronted with the need to classxfy or label their experience. For
example, upon encountering certain symptoms, a doctor diagnoses a specific disease. The generic
task can be easily stated: given some description of an experience, along with a set of known classes
and their descriptions, assign that experience to one or more classes. The most frequent successes
in expert systems have involved just such classification or diagnostic tasks (Davis & Lenat, 1982).
Much of the work on machine learning has focused on learning descriptions for classification.

However, an intelligent agent must also be able to solve novel problems and formulate plans. For
example, when going to a meeting, an agent devises a path from its current location to the target
site. The generic task can be stated as: given some desired state or goal, find some sequence of
actions that takes you from the current state to the desired one. Navigation and robot manipula-
tion are the most obvious applications of problem-solving techniques, but there are many others,
including scheduling. This area has been less popular within machine learning, but much of the
recent work has focused on acquiring knowledge to improve the speed and quality of methods for
planning and reasoning.

Finally, intelligent agents also participate in other high-level behaviors that may not fit neatly
into either the classification or problem-solving paradigms. Such behaviors include the design of
new artifacts, communication with other agents, and the control of motor effectors. To date,
the machine learning community has placed little emphasis on these areas, but because of their
" potential, this will undoubtedly change in the future.

2.4 Supervised and Unsupervised Learning

Another dimension that influences learning is the degree of supervision. In some cases, a tutor or
domain expert may be present to give the learner immediate feedback about the appropriateness of
its behavior. This situation is typically called supervised learning. In other cases, an unsupervised
learner may have to fend for itself. Here the learner has little or no external guidance in building
knowledge structures or composing solutions to problems; at most, the environment provides coarse-
grained feedback about the learner’s overall effectiveness on the task at hand.

Early work in machine learning focused on the simpler supervised task, and it continues to
receive considerable attention. There are good practical reasons for this interest. Although experts
generally have poor ability to introspect about their domain knowledge, they are much better at
providing examples of correct and incorrect beha.vilor.
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Both forms of learning can occur in many contexts, though they take on different forms in
different domains. In classification domains, the supervised task is usually called learning from
ezamples, and the individual training experiences are called instances. This task can be stated as:

o Given: A set of instances (e.g., patient symptoms) and their associated classes (e.g., diseases);
¢ Find: A general description for each class that matches only its instances.

This basjc task has been examined within all the major paradigms of machine learning, and until
recently, the vast majority of research papers have dealt with this topic. However, there is now also
considerable interest in unsupervised concept learning, in which the learner must decide for itself
not only the class in which it should place each experience, but also the number of such classes.
This has been called clustering (Fisher & Langley, 1985).

In problem-solving domains, supervised learning occurs when a tutor is available to suggest the
correct operator or subgoal at each point in the search for a solution. Methods that operate in this
context are sometimes called learning apprentices, and they show promise as a way of extracting
knowledge from an expert (Mitchell, Mahadevan, & Steinberg, 1985) in problem-solving and design
domains. However, more research in this area has focused on unsupervised learning, in which the
agent must distinguish desirable actions from undesirable ones for itself. This has been called the
credit assignment problem (Sleeman, Langley, & Mitchell, 1982), and researchers have explored a
variety of responses across a number of paradigms.

2.5 Incremental and Nonincremental Learning

Some learning algorithms process experiences one at a time, whereas others process a large set of
experiences at once. The former class is often called incremental and the latter nonincremental
However, examining only the surface behavior of a system can be misleading, since an inherently
nonincremental system can always be run in incremental mode and vice versa. For example, if one
lets a nonincremental technique retain exact copies of previous experience in memory, it can process
the first experience, then process the first two experiences, then process the first three experiences,
and so forth. Similarly, one can take an incremental method and iteratively run it through the
same set of experiences again and again. A better definition of incremental involves the number of
previously seen experiences one must reprocess during learning (Schlimmer & Fisher, 1986).

Both nonincremental and incremental approaches have their advantages. The former can collect
statistics about all the data, giving a learning method more information on which to base its
decisions. On the other hand, incremental methods tend to be more efficient and, in principle,
can deal with much larger data sets. Much of the recent machine learning research has focused on
incremental approaches, though there are some notable exceptions in the literature on connectionist
methods and on the induction of rules and decision trees.

2.6 Inductive and Analytic Learning

A sixth important dimension relates to the type of learning used to acquire knowledge. In one
class of approaches, inductive learning methods formulate knowledge based mainly upon observed
data. Empirical, genetic, and connectionist techniques are instances of this general strategy. These
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methods are inductive in the sense that they move beyond their input, and generalize it to create
knowledge that was not previously in memory. In contrast, analytic learning methods formulate
knowledge based mainly on other knowledge already in memory. Explanation-based learning is a
clear example of this type of approach; it uses prior knowledge to explain new experiences, then
simplifies the explanation and stores it in memory.

Inductive methods have also been called knowledge-level learners, since their acquired knowledge
structures change the deductive closure of the system (Dietterich, 1987). In contrast, analytic
methods are symbol-level learners; their compiled knowledge may increase efficiency but leave the
deductive closure unchanged. However, later we will consider some applications in which induc-
tive techniques produce symbol-level learning, and consider some conditions under which analytic
methods can produce knowledge-level shifts.

Of course, more unified approaches are possible. A learner could use prior knowledge from the
domain to constrain induction, producing partial explanations that still require inductive leaps to
form general structures. Alternatively, instead of using deductive rules to construct explanations,
a learner could use plausible inference rules; the resulting explanations may be plausible, but they
are not guaranteed to hold, and thus involve a sophisticated form of induction. Some researchers
have argued that the unification of inductive and analytic approaches should be given high priority
(Langley, 1989).

3. Five Paradigms for Machine Learning

Now we can examine some recent research on machine learning. We have divided the field into five
“paradigms” based upon the basic representations and learning methods employed — connectionist
approaches, genetic algorithms, empirical rule learning, analytic learning, and case-based methods.
In each case, we review the basic approach, examine recent advances, and consider some open
research issues.

Each paradigm is loosely defined not only by a shared set of assumptions, concerns, and methods,
but also by the amount of interaction among researchers. Generally, people within a given paradigm
read and reference each other’s papers, attend the same meetings and presentations, and all too
often ignore work in other paradigms. In Section 3.6, we identify some important relations among
these paradigms that reveal more similarities than appear at first glance.

3.1 Connectionist (Neural Network) Learning

Some of the earliest research on machine learning focused on connectionist methods (Nilsson, 1965),
and recently there has been a resurgence of interest in this approach. The name derives from the
basic representation for learned knowledge — a network composed of nodes connected by directed,
weighted links (sometimes called “neural” networks because of the suggestive similarity between
the computational style of network nodes and neurons). Such systems typically assume that inputs
are represented as a set of binary features, with each feature being present or absent. In operation,
features that are present activate the network’s initial nodes. Then, the weights on links from these
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nodes to others determine whether subsequent nodes will be activated. The process iterates until
activation has a chance to reach the network’s final nodes, with the output of the network being
the activation of the final nodes.

Let us examine the connectionist framework’s position on the dimensions discussed in Section 2.
Learning consists of modifying link weights to better mimic the desired relations among the inputs
and outputs. Thus connectionist approaches lend themselves naturally to performance tasks that
involve classification, but they can be adapted to more complex domains. Although not logical
in form, the connections encode the acquired knowledge and summarize the data encountered.
Predominantly, researchers have focused on methods for supervised learning situations, but there
are some exceptions. Connectionist researchers have also examined many alternative strategies for
adjusting link weights; many are incremental and all are inductive in nature.

3.1.1 PERCEPTRONS AND LINEAR THRESHOLD UNITS

The simplest form of connectionist network is the perceptron or linear threshold unit (Rosenblatt,
1962). In this framework, there is a single output node to which each input node is connected by a
single weighted link. The output node also has an associated threshold. Given a datum, the output
node sums the weights of the links from active input nodes (those whose features are present). If
this sum exceeds the threshold, the output node is activated; otherwise it remains inactive. Figure 1
presents an example of a simple perceptron.

Despite their simplicity, perceptrons can represent a variety of functions. For example, consider
a network in which N links have a weight of one and all others are zero. If the threshold is set to
N, the network encodes a “rule” that matches only when the conjunction of the nonzero features
are prés'enti. Saﬂuly,Tf the threshold is set to one, the same network encodes a disjunctive “rule.”
Using a threshold of K (where N > K > 1) lets the network concisely express the K of N function.
Unlike the former two, this latter function is difficult to represent using logical notation. Moreover,
allowing weights other than one supports an even broader class of functions. In fact, given the
appropriate weights, a perceptron can represent any linearly-separable class. In other words, if we
view the F features as defining an F-dimensional space, the network can describe any class that

‘involves placing a single hyperplane between the instances of two classes.

There are a number of straightforward methods for learning appropriate link weights given ex-
ample input-output pairs. One of these, the perceptron learning rule, learns only when it makes
a prediction error. If the output unit is not active when it should be, then its incoming weights
are too low; accordingly, they are incremented by a small constant. By the same reasoning, if
the output unit is active when it should not be, the weights are too high and are decremented by
the same small constant. Part of the appeal of this incremental method is that it is guaranteed
to converge on any linearly-separable class given a finite number of instances (Minsky & Papert,
1969). '

Other learning methods, such the LMS procedure (Widrow & Hoff, 1960), modify each weight
differentially in an attempt to reduce the mean-squared error between the desired and generated
output. This approach can be run incrementally or nonincrementally (using all available instances),
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If a feature is true of the current

fuel pump, then the corresponding If Material is Steel,
node inputs its weight. Input Then 5,
Otherwise 0.

if Filter is Present,
Input Then 3;
Otherwise 0.

If Qutputs > 2,
Input Then 2
Otherwise 0.

Input< -4.

To adjust the threshold to compensate
for the likelihood of overheating, one
node always inputs its weight.

If The sum of all inputs > 0,
Output Then Overheats;
Otherwise Stays-Cool.

Figure 1. Schematic of the organization of a linear threshold unit for a simple domain in which one must
predict whether a fuel pump will overheat based on the material, the number of outputs, and the
presence of a filter. Inputs correspond to instance features (shown at the top of the figure). If these
features are present, their weights are summed by the output unit (shown at the bottom). Learning
modifies the weights associated with inputs and thereby alters the summed output. An additional
constant input (lowest and leftmost input) lets the linear threshold unit adjust its threshold.

and it can be generalized to handle networks with continuous rather than binary inputs. Linear
threshold units have been used to learn regular and irregular endings for the past tense of English
verbs (Rumelhart & McClelland, 1986), and a perceptron-like learning method has demonstrated
its ability to acquire expert-level performance in the game of checkers (Samuel, 1959).

3.1.2 BACKPROPAGATION IN MULTILAYER NETWORKS

Despite their attractiveness, single linear threshold units cannot represent or learn class descriptions
that are not linearly separable. Although higher-order components like quadratic threshold nodes
might be feasible, a more common approach uses a network with multiple layers. These structures
include intermediate, or hidden, nodes that are indirectly connected to the inputs and outputs
of the network. Given sufficient breadth in this structure, the network can express an arbitrary
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function of the input features. Moreover, if the structure is relatively shallow.(i.e., only short paths
from inputs to outputs), large networks of this sort are computationally efficient to use. However,
learning the weights for such networks is another matter entirely, and much of the recent research
on connectionist learning has focused on this issue.

One of the most intuitive approaches to learning appropriate link weights in a multiple layer
network applies the LMS procedure recursively. Known as backpropagation, this procedure first
propagates activation through the network in the normal, forward direction. Based on the differ-
ences between observed and desired outputs, backpropagation uses LMS to compute the desired
activation levels on the hidden nodes one level back. Not only does this indicate the appropriate
weight change in the final links, it also allows backpropagation to treat the hidden nodes as if they
were output nodes. Using the difference between the observed and desired activation for hidden
nodes, backpropagation applies LMS recursively until it reaches the input nodes.

Like the perceptron learning rule, backpropagation is conducting a search in the space of link
weights. Effectively, both carry out a hill-climbing search in which the gradient is defined by
error reduction. Unlike the convergence result for the simpler learning rule, backpropagation may
become stuck in local optima. This has not emerged as a significant problem in studies to date,
but it remains an open issue. More pressing problems include a very slow rate of learning and
some dependence on the number of hidden nodes. One noteworthy application demonstrates that
backpropagation can acquire pronunciation knowledge that accurately predicts phonemes from
English text (Sejnowski & Rosenberg, 1987).

3.1.3 ALTERNATIVE APPROACEES TO CONNECTIONIST LEARNING

Researchers have explored a number of other approaches to learning in multi-layer networks. For
example, Boltzmann machines are a probabilistic technique based on an analogy with thermo-
dynamics, in which nodes settle into stable configurations as the “temperature” of the system
decreases (Ackley, Hinton, & Sejnowski, 1987). Such methods must be run many times, in order to
reach “equilibrium” and to collect statistics about the probability of connected nodes being active
simultanecusly. As a consequence, they are typically even slower than backpropagation. Neverthe-
less, Boltzmann machines also have advantages, and active research continues in the area, including
applications to speech recogmtxon (Prager Harrison, & Fallside, 1986)

Other researchers have taken a reinforcement lea.mmg a.pproach In this framework ‘instead of
fine-grained feedback about each of the network’s outputs, the only information available is a single
evaluation score for the network’s overall behavior on each instance. For example, Barto, Sutton,
and Anderson’s (1983) AR-P algorithm rewards or penalizes each weight in the network equally as
a function of the reinforcement evoked by the network’s overall behavior. This learning scheme has
been successfully applied to a number of domains, including a pole-balancing task involving the
dynamic control of forces over time. Like the other methods, this approach extends to domains in
which the inputs are real-valued rather than binary. ..

In other studies, researchers have explored the behavmr a.nd capa.blhtxes of cychc and deeply
nested network structures. For example, a cyclic network has its input nodes connected to its
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output nodes and vice versa. This design allows networks to memorize patterns, and given a partial
or noisy pattern to recall, the net can reconstruct the complete, noise-free original (Kohonen, Oja,
& Lehtis, 1981). In a deeply nested network, hidden nodes are ordered, and each successive hidden
node receives input from all prior hidden nodes. Nesting the hidden nodes capitalizes on the
representations they have learned, and the resulting structure tends to generalize better (Fahlman
& Lebiere, 1990).

3.1.4 OPEN IssuEs IN CONNECTIONIST LEARNING

Research on learning in the connectionist framework has made significant strides since the early
results with perceptrons, and initial applications have started to emerge. Still, a number of serious
issues remain to be addressed:

o Increasing the rate of learning. Existing methods learn very slowly, often requiring many
iterations through the training instances. Future research should examine the factors that
affect the learning rate and develop connectionist methods that learn more rapidly (Fahlman,
1988; Hampson & Volper, 1987).

o Generalization. Current methods converge on weight settings that summarize training in-
stances, but sometimes this is at the expense of accurate generalization over unseen instances.
This issue becomes especially important when the training data are noisy (Fisher & McKusick,
1989; Knight, 1989; Weiss & Kapouleas, 1989).

e Structural knowledge. Some domains seemn inherently relational, but connectionist methods

rely on feature-based representations. The framework must be adapted to represent and learn
from relational and structural input (Hinton, 1986).

o Sequential behavior. Connectionist techniques lend themselves to parallel implementations,
but they have difficulty carrying out ordered actions like those required for problem solving.
Extended architectures are needed that can handle sequential behavior, along with learning
methods that can support them (Elman, 1990; Mozer & Bachrach, in press).

o Incorporating domain-specific bias. Perceptrons have a strong bias towards learning linearly
separable classes, but multi-layer networks search a much larger space. Future research should
examine methods for incorporating biases into multi-layer networks that constrain the learning
methods’ search and improve their learning rates (Towell, Shavlik, & Noordewier, 1990).

Growing numbers of Al researchers are examining the connectionist paradigm seriously and many
are concerned with issues of learning. Theoretical analyses and experimental studies have begun
to reveal a deeper understanding of these methods’ advantages and drawbacks, pointing the way
to the extensions and improvements outlined above.

3.2 Genetic Algorithms and Classifler Systems

Genetic algorithms are a family of adaptive search methods that derive their name from a loose
analogy with genetic change in a population of individuals. Like connectionist methods, most
genetic algorithms assume a feature-based representation of instances and events. However, rather
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Patterns: Weights:
If Material is Aluminum and Filter is Present,
05
Then Stays-Cool. To classify,
output the
T . - class of the
If  Material is Steel, Filter is Absent, and Outputs is 1, 10 strongest
Then Overheats. ’ matching
pattern.

The crossover operator creates two new patterns by
combining two older, highly weighted patterns. A
cut point is selected, and the postfix of one pattern is
appended to the prefix of the other (and vice versa).

Old patterns:

if  Materialis Steel and Filteris Present and Outputs > 2,
Then Overheats.

If Filter is Absent and Oulputsis 1,
Then Overheats.

New patterns:

If  Materialis Steel and Filteris Absent and Outputsis 1,
Then Overheats.

It Filteris Present and Outputs > 2,
Then Overheats.

Figure 2. Schematic of the representations and operators used in the genetic algorithm as applied to the
fuel-pump domain. The weights of conjunctive patterns (shown at the top of the figure) are used

to classify instances. Learning modifies both the weights of patterns and their conditions. The*~
simplest operator generates new patterns that are minor random variations of old ones (not shown).
The crossover operator (shown at the bottom) splices together an arbitrary prefix of one pattern

with an arbitrary suffix of another (and vice versa).

than using a weighted network to represent acquired knowledge, they employ a disjunctive set
of knowledge structures or patterns. Each pattern is conjunctive and specifies the presence (or
absence) of some features. Patterns also have an associated weight, sometimes called the pattern’s
fitness, that summarizes its performance on past experiences. Given a new instance, a stochastic
scheme follows the recommendations of strong matching patterns to reach a decision (Wilson, 1987).

In terms of the dimensions of Section 2, this paradigm lends itself naturally to performance tasks
that involve both classification and problem solving, as we discuss below. Research on genetic
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algorithms has focused on supervised learning situations, although often the feedback is some overall
score, as in the reinforcement learning framework discussed above. Researchers have explored a
number of inductive approaches to incrementally modifying the content of individual patterns and
their weights, and they have successfully applied genetic algorithms and classifier systems to a
variety of tasks (Goldberg, 1990).

3.2.1 LEARNING WITH GENETIC ALGORITEMS

In addition to using a different learned representation, genetic algorithms and connectionist tech-
niques also carry out a different type of search during learning. Whereas connectionist methods
apply a hill-climbing operator to a single state (one set of weights), genetic algorithms apply several
heuristic operators to a set of states (patterns). As shown in Figure 2, genetic algorithms follow
three steps in processing new experiences: updating pattern strengths, applying search operators,
and pruning ineffective patterns. Methods for updating weights vary widely between specific ge-
netic algorithms, and we discuss several below. For the second step, genetic algorithms typically
use two operators, crossover and mutation, that apply to strongly weighted patterns to produce
syntactically similar new patterns; crossover is analogous to gene splicing, whereas mutation intro-
duces random, minor variations. To maintain the size of the pattern set, the third step replaces
prior, weakly weighted patterns with new patterns. In a sense, patterns compete with each other to
produce “offspring” in the next cycle or “generation.” Thereisa large body of both theoretical and
empirical evidence showing that, even for very large and complex search spaces, genetic algorithms
can rapidly locate effective knowledge structures using about 50 to 100 patterns.

Applying genetic algorithms to classification tasks is straightforward when instances can be
represented as features. The set of knowledge structures is initialized to N random patterns, some
of which will be very specific and others of which will be quite general. Each pattern is assigned
a class. To adjust the weights, each time a pattern is successful (i.e., it matches an instance from
its own class or it fails to match an instance from another class), its weight in incremented; each
time a pattern is unsuccessful (i.e., fails to match its class or matches another class), its weight is
decremented. Because pattern weights are decremented when they fail to match instances in their
class, if the concept to be learned is disjunctive, the weight of every pattern will be decremented
at one time or another. Nevertheless, pattern strength is still a useful heuristic for directing search
through the space of descriptions, and genetic algorithms can learn complex disjunctive concepts,
even in noisy domains (Wilson, 1987). This ability results in part from the inclusion of many
patterns in each generation, some of which compete and others of which complement each other,
in that they come to occupy different ‘niches’.

3.2.2 CLASSIFIER SYSTEMS AND PROBLEM SOLVING

Classifier systems are an architecture for problem solving that incorporates a genetic algorithm as
a component. Most work along these lines assumes a simple, forward-chaining production system,
consisting of a set of condition-action rules and a dynamic working memory. Each rule is weighted
and has one or more feature patterns as its condition and a single pattern as its action. Memory
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contains a set of fully specified patterns, or messages, that have a value for all features. Through
encoding conventions, some messages originate as inputs to the system and others trigger outputs.

The classifier system framework extends the standard forward-chaining recognize-act cycle. On
every cycle, each rule whose conditions match messages in memory makes a bid proportional to its
weight. One or more rules are then selected for application, with probabilities proportional to their
bids. The selected rules are applied by adding the patterns in their actions to working memory.
These new messages may allow other rules to match, and the cycle continues.

There are two main aspects to learning in classifier systems. First, a genetic algorithm is used to
generate new candidate rules from existing, strongly weighted rules (similar to the process described
above). Second, the classifier system adjusts the weights of rules based on their contribution to
desirable behavior. This involves assigning credit to useful rules and blame to faulty ones. An
effective approach to this latter learning problem is called the bucket brigade (Holland, 1985). As
rules apply, they pass along a portion of their weight to the rules that applied in the cycle before
them. Some rule ultimately is rewarded directly by the environment, and this reward is iteratively
passed back through the rules in the application chain, increasing their weights. In the simplest
case, the weight of any rule that participates in the chain eventually converges on the amount
received by the last rule in the chain. As a consequence, rules that apply but do not lead to
external reward are consistently paying out their weight without receiving any reinforcement, and
their weight diminishes. Classifier systems have been successfully applied to a variety of domains,
including regulation of gas flow through pipelines (Goldberg, 1985) and survival in a resource-scarce
environment (Booker, 1988).

3.2.3 ALTERNATIVE Usks OF GENETIC ALGORITHMS

Unlike classifier systems, which apply operators to propose individual new rules, another approach
to using genetic algorithms for problem solving applies genetic operators to entire rule sets. Rather
than exploring variations of rule conditions, the operators primarily explore variations on rule
combinations. Because of this, the knowledge structure is composed of multiple rule sets, each of
which constitutes a forward-chaining production system that has an associated weight.

In this framework, the weight of each rule set is evaluated by running the rules on a set of
training problems. Since rule sets with strong weights tend to be selected by the search operators,
useful combinations of rules are propagated through the knowledge structure, and less useful rule
combinations are gradually eliminated. The operators occasionally introduce new rules, but these
are always evaluated in the context of their rule set. The power of these ideas has been demonstrated
by a state-of-the-art poker-playing system (Smith, 1983) and by an effective system for multiple
class discrimination in the domain of human gait analysis (Schaffer & Grefenstette, 1985). Recent
research also shows that a combination of this approach and classifier systems performs better in
some domains than either in isolation (Grefenstette, 1988).
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3.2.4 OPEN IssUEs IN GENETIC ALGORITHMS

Although considerable progress has occurred in the understanding of genetic algorithms since their
inception, many open research issues remain. These include:

Alternative representations. Genetic algorithms typically assume a feature-based representa-
tion of knowledge. Future work should explore the application of these methods to more
sophisticated representations (Gordon & Grefenstette, 1990; Koza, 1989), adding new genetic
operators if necessary.

Acquired representations. Classifier systems can represent complex class descriptions by the
organization, variability, and distribution of weights in clusters of rules. However, we need
to better understand the underlying nature of such learned representations and how are they
acquired (Belew & Forrest, 1988).

Emergence of useful symbols. Classifier systems can use tags to build associations between
rules, producing behavioral sequences. Recent work has explored the development of such
internal symbols and the conditions under which they emerge (Shaefer, 1987).

Credit assignment. The issue of credit assignment is central to applying genetic algorithms
to problem solving, and a variety of methods have been proposed, including weight update,
conflict resolution, and the use of “taxes.” Research is needed to determine the conditions
under which each approach behaves well, and to explore hybrids that might do better than any
method in isolation (Grefenstette, Ramsey, & Schultz, 1990).

Incorporating domain knowledge. Genetic algorithms seem especially well suited for knowledge-
lean domains in which extensive search is necessary, but they may also be able to use and refine
existing domain knowledge.

Population size. In some domains, genetic algorithms should behave significantly better than
hill-climbing techniques (e.g., connectionist methods). Some research has studied the effect of
the number of patterns in a knowledge structure (Robertson, 1988), but future work should
identify the broader conditions under which maintaining a redundant knowledge structure is
worth the cost.

Researchers in the genetic algorithm community are already attacking these problems, but more
work remains before this promising approach achieves its full potential.

3.3 Empirical Learning Methods

Another community of machine learning researchers have studied empirical methods for the acqui-
sition of more explicit knowledge structures. Let us consider the dimensions of Section 2 for this
approach. Like connectionist and genetic methods, these techniques are inductive, in that they
move beyond training instances to make predictions about novel cases. Unlike them, empirical
learning methods have employed relational and structural representations for both experiences and
acquired knowledge, though the majority of research has thus far focused on propositional repre-
sentations. Much of the early work on empirical learning dealt with classification domains, but
there has also been progress on problem solving and natural language acquisition.
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Currently there are a variety of well-understood methods that learn production rules, decision
trees, and concept hierarchies (to name a few of the many learned representations). Some methods
require the close supervision of a tutor, as described in Section 2.4, whereas others learn in an
unsupervised fashion. Some techniques require all instances at the outset, whereas others learn
incrementally and can process new instances with little additional effort. In this section we review
three main approaches to empirical learning, along with some open research problems.

3.3.1 EMPIRICALLY LEARNING PRODUCTION RULES

One common scheme for representing domain expertise uses production rules whose conditions test
properties of experiences and whose actions specify classifications. Researchers have explored a va-
riety of empirical methods for learning such rules from a set of preclassified training instances, and
most approaches rely on the fact that the space of rule conditions are partially ordered according
to generality. Thus, one can start with the most specific possible description, using a generalization
operator to remove or relax conditions. Alternatively, one can start with the most general possible
description, using a specialization operator to add or constrain conditions. The candidate elimina-
tion algorithm (Mitchell, 1977) employs both of these ideas to carry out a bidirectional exhaustive
search to identify conditions for classification rules. For each possible class, the algorithm maintains
a version space that summarizes the space of hypothesized conditions in terms of a most specific
boundary set and a most general boundary set. New positive instance may indicate the need for
more general descriptions, forcing revision of the specific boundary, whereas negative instances
may suggest more specific descriptions, leading to revision of the general boundary. This continues
until the algorithm converges on a single conjunctive description in both sets, or until one of the
boundary sets becomes empty, indicating an inconsistency.

The candidate elimination algorithm assumes that a single, conjunctive rule can describe each
class, and that training instances are free of noise. However, disjuncts and noise are common in
applied settings. Another appealing family of learning methods relaxes these assumptions and uses
heuristic search to limit computational expense. These methods employ beam search or related
methods to find individual rules that discriminate between positive and negative instances of a
class. Search may occur from general to specific rules or in the opposite direction. During each
search, candidate rule conditions are minimally specialized (or generalized) in all possible ways, each
specialization (or generalization) is heuristically evaluated for predictive accuracy on the training
instances, and the best are further modified. Search terminates when none of the new specializations
(or generalizations) are statistically better predictors than their predecessors, at which point the
best candidate is used to construct a classification rule. To handle disjunctive domains, some
methods then remove all positive instances from the training set that are covered by this rule and
repeat the search process over the remaining instances, continuing until all positive instances are
covered by some rule (Michalski, 1983; Clark & Niblett, 1989). Figure 3 depicts this approach
graphically.

Methods of this sort have been successfully applied to moderately realistic tasks. For example in
the domain of lymphography, some rule-learning systems (Michalski, 1987; Clark & Niblett, 1989)
have equaled the classification accuracy of human experts (82% correct). Another rule-learning
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Any fue! pump
Filter is Present

Material is Steel

Material is Steel
and
Filter is Present

Material is Steel
and
Filter is Absent

Search moves from general rule conditions to specific ones
until the matching pumps are not statistically distinguishable.

If Qutlets < 2 and Filter is Present,
1 Then Overheats.

The result of the search forms

2 the next rule in the sequence. To classify, output
the class of the first
matching rule.

S Cool The last rule matches all

n Stays-Cool.  remaining fuel pumps.

Figure 3. Schematic of the representation and search used in CN2, a recent rule learning method (Clark &
Niblett, 1989), in the fuel-pump domain. Learned rules (shown at the bottom of the figure) are
ordered, with the last rule identifying the class of any remaining instances. Search maintains a
limited size boundary as it looks for rule conditions that are both predictive and reliable. Initially,
it looks for a consistent description of a single class given all the instances, and subsequently it
searches for a consistent description of those examples not covered by any rules found thus far.
Search terminates when all instances are covered by some rule.

system (Schlimmer, 1987) has demonstrated similar results for recognizing poisonous mushrooms
(95%) and predicting the political party of Congressmen based on their voting records (90%).

In spirit, methods for learning production rules are similar to connectionist and genetic methods.
However, there are some significant differences. As we have seen, most of these methods take
advantage of the fact that the space of class descriptions can be partially ordered by generality.
Thus, most rule-learning schemes search using specialization operators, generalization operators, or
both. Second, the search in most rule-learning methods is biased toward finding simple descriptions.
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If this is appropriate in a given domain, then these methods tend to learn much more quickly than
connectionist or genetic methods. Finally, some rule-learning methods represent experience and
learned knowledge using relational and structural representations, giving them more expressive
power than other approaches. '

Although methods for empirical rule learning were originally designed with classification domains
in mind, they can also be applied to problem-solving tasks. For example, given a set of legal op-
erators for carrying out state-space search, the same methods can acquire the heuristic conditions
under which each operator should be applied. However, this approach requires first identifying
appropriate and inappropriate applications of each operator, and this is equivalent to assigning
credit and blame to steps along a search path. One response to this latter issue involves waiting
until a complete solution has been found. Then, steps along the solution are labeled as appropriate
operator applications, whereas all steps leading off the solution are labeled as inappropriate (Lan-
gley, 1985; Mitchell, Utgoff, & Banerji, 1983). Another response to the credit/blame assignment
issue involves interacting directly with a domain expert who provides immediate feedback about
the desirability of each action. In either case, one can then apply empirical learning methods to
the appropriate and inappropriate applications (as positive and negative instances-instances of the
class, respectively), producing heuristic rules as output.

3.3.2 CoNSTRUCTING DECISION TREES

Other work on empirical learning takes quite a different approach to the supervised learning task.
This framework assumes the same input as systems that learn production rules (i.e., a set of
instances assigned to classes), but the learned knowledge is represented as a decision tree (Brieman,
Friedman, Olshen, & Stone, 1984; Quinlan, 1983). Each nonterminal node of this tree specifies
some attribute to test, each branch specifies an alternative value, and each terminal node specifies
a class. To classify a new instance, a decision tree iteratively tests non-terminal node attributes
of that instance and follows matching branches until it reaches a terminal leaf that classifies the
instance.

The most common decision-tree learning method uses a divide-and-conquer algorithm, selecting
~ domain attributes to partition the instances and recursively building sub-decision trees to describe
partitions. An evaluation function selects the most discriminating attribute for each non-terminal
node’s test. Instances are partitioned based on their value for the test attribute, and subtrees are
constructed to describe each partition. As the process iterates, subtrees are complete when all
instances in their partition have the same class (or when there are no more attributes to test). This
process can be viewed as a greedy, general-to-specific search through the space of decision trees.
Figure 4 shows an example of this approach.

Decision-tree methods have been applied to a variety classification tasks, representing a mix
of synthetic and natural domains. For example, induced decision trees can successfully recognize
lost chess endgames (100% for losses in three-ply) (Quinlan, 1983), and they can accurately classify
thyroid diseases (99%) (Quinlan, Compton, Horn, & Lazarus, 1986). The latter application resulted
in a decision tree that outperformed a hand-crafted expert system that took years to construct.
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Figure 4. Schematic of the representation and search used in decision tree learning for the fuel-pump domain.
To classify an instance, the test at the root of the tree (shown at the top of the figure) is applied
first, and based on the outcome, classification proceeds with the appropriate subtree. The search
begins by determining the single most discriminating test. Instances are then partitioned by their
outcome for this test. The standard method terminates search when all instances in a partition
are of the same class (or there are no more tests), but some variants use statistical tests to halt
earlier as an effort to avoid overfitting.

Methods for inducing decision trees constitute some of the most widely studied algorithms within
the machine learning community. Extensions include techniques for pruning trees in response to
noisy training data (Brieman et al., 1984; Kononenko, Bratko, & Roskar, 1984; Quinlan, 1986b),
methods for detecting useful thresholds on numeric attributes (Quinlan, 1986a), and algorithms for
incrementally revising a tree in response to new data (Schlimmer & Fisher, 1986; Utgoff, 1989).
Decision-tree methods have received significant attention within applied Al circles, and some in-
dustrial groups have used them to automatically construct expert-level diagnostic systems.

3.3.3 FORMING CONCEPT HIERARCHIES

In unsupervised concept learning tasks, no expert is available to classify instances for the learner.
Instead, the learner is given a set of unlabeled instances and is asked form to “useful” concept de-
scriptions. A common approach to this problem, called conceptual clustering (Michalski & Stepp,
1983), involves (a) determining how to cluster the instances and (b) building descriptions for those
clusters. Typically, conceptual clustering methods form a hierarchy or taxonomy of concepts. Al-
though they are superficially similar to decision trees, each node in a concept hierarchy has an
associated concept description that is used during classification. Also, although both paradigms
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typically involve a top-down search from simple to more complex representations, conceptual clus-
tering methods use different search operators and evaluations functions than those used for building
decision trees. For example, some techniques measure the simplicity of the potential clusters’ de-
scriptions; others aim to maximize predictive accuracy over all attributes, since no class information
is available.

Conceptual clustering is an active area of research within the empirical learning paradigm. Recent
work has focused on using goals to direct the clustering process (Stepp & Michalski, 1986), on
devising incremental methods for hierarchy formation (Fisher, 1987; Lebowitz, 1987), and on the
role of probabilistic descriptions in clustering (Cheeseman, Kelly, Self, Stutz, Taylor, & Freeman,
1988; Fisher, 1987). These methods hold considerable promise because they address the issue of
organizing concepts into integrated memory structures.

Methods for conceptual clustering appear to be appropriate for classification domains where
no expert is readily available. For example, musicologists viewed the taxonomy formed by one
conceptual clustering algorithm as a significant, scientific contribution (Michalski & Stepp, 1983).
Similarly, a learned set of classes of infrared stellar bodies were judged significant by astronomers
(Cheeseman et al., 1988). Finally, conceptual clustering methods have led to improved performance
on prediction tasks for other domains, including soybean diagnosis and congressional voting records
(Fisher, 1987).

3.3.4 OPEN IssUEs IN EMPIRICAL LEARNING

Although our understanding of empirical learning methods has reached the stage where initial
applications are feasible, basic research is still in progress. Active areas of research include:

o Incremental learning. Many existing empirical methods are nonincremental: they must re-
process many instances to incorporate new information. Incremental methods can be more
efficient, but most are not yet as robust as their nonincremental counterparts (Fxsher, 1989;
Utgoff, 1989). . P T

. 7Search-lzmzted methods Many enstmg empirical techmques 7ca.rry out a mgmﬁcant Ee;arig:h
through their space of descriptions. Search-limited methods, such as hill climbing and greedy
algorithms, are much more efficient, but they should be modified to increase their chances of

finding satisfactory solutions (Quinlan, 1986a; Langley, Gennari, & Iba, 1987).

o Incorporating domain knowledge. Most empirical learning systems use domain knowledge in
minimal ways. These methods should be extended to use available knowledge to constrain
search and produce clearer knowledge structures (Dra.stal Raatz, & Czako, 1989; Elio &
Watanabe, in press; Hirsh, 1989). :

o Representation change. Most learning systems are unable to extend their initial representa-
tion language. Empirical methods for defining new terms hold great promise, but they must
constrain their search for such terms and generate effective candidates (Muggleton & Buntine,
1988; Pagallo, 1989; Matheus & Rendell, 1989). -
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e Noise and concept drift. Some methods are robust with respect to noise and changing envi-
ronments (Schlimmer & Granger, 1986), but researchers should explore the general principles
underlying these issues and identify the class of techniques that can handle them.

e Uncertainty and probability. Many expert systems for classification employ probability or other
techniques for handling uncertainty, but few learning methods incorporate these ideas. Re-
searchers need to extend existing representations and methods so as to handle uncertainty
(Fisher, 1987; Geiger, Paz, & Pearl, 1990).

Research on empirical techniques is leading to continual progress on the above problems, but much
remains to be done in this promising area of machine learning.

3.4 Analytic Learning

In contrast to the inductive learning methods discussed so far, another major paradigm in machine
learning focuses on analytic learning. This approach emphasizes the transformation of existing
domain knowledge into a more useful form, using data only to guide the application of deductive
processes to this knowledge. These methods are sometimes called symbol-level learners (Dietterich,
1987) because the learned knowledge increases efficiency.! If the performance system must oper-
ate under limited resources, such as time or memory, then such learning can indirectly lead to
improvements in accuracy as well.

In terms of the dimensions of Section 2, learning methods in this paradigm typically encode
experiences, domain knowledge, and learned knowledge with relational representations. Because
efficiency is the most obvious benefit of analytic learning, these methods have typically been ap-
plied to problem-solving performance tasks. They have also been studied in both supervised and
unsupervised learning situations; in addition to constructing new operators, these methods have
also been applied to the task of improving operator selection. As many have observed, methods
of this type could be applied to existing knowledge without the aid of data to guide learning.
This nonincremental approach has been predominantly shunned in favor of more computationally
efficient, incremental approaches, though there are recent exceptions (Etzioni, 1990).

Ezplanation-based learning is one common approach that can be viewed as compiling knowl-
edge into an efficient form rather than creating or extending knowledge. This class of learning
methods can simplify a problem solver’s reasoning process by composing rules into useful combi-
nations. Explanation-based learning can also acquire control knowledge that limits alternatives,
thus reducing the amount of search problem solving incurs. There currently exist number of well-
specified algorithms for explanation-based learning, and recently there have been some successful
applications to significant problem-solving tasks. In this section, we review the basic approach, its
adaptation to problem solving, and open research questions.

1. However, in some applications, inductive methods can also improve efficiency (Langley, 1985; Mitchell et al., 1983;
Ohlsson, 1987).
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3.4.1 CoMPILING EXPLANATIONS INTO RULES

Much of the AI research on reasoning and theorem proving takes a problem reduction approach.
This framework assumes that domain knowledge is specified as a set of inference rules or goal
decompositions. For example, to get from Washington to New York, an agent can drive to National
airport, fly to LaGuardia, and take a taxi into the city. Given a top-level goal, an agent can use
“and-or” search to find some set of primitive actions, states, or beliefs that will achieve that goal.
Some programming languages, such as PROLOG, support this form of reasoning directly.

The result of a problem-reduction search is a “proof tree” or “explanation” for how to achieve
the initial goal. Methods for explanation-based learning use this information during the learning
process to create summarizations of search that can simplify future search for similar goals (DeJong
& Mooney, 1986; Mitchell, Keller, & Kedar-Cabelli, 1986). More precisely, given a problem and its
solution, explanation-based learning uses a proof tree for the solution of a problem to: (a) focus
attention on relevant problem features, and (b) summarize the problem-solution pair as a general
rule. The resulting rule states the conditions under which the proof will hold, and in the future,
similar problems can be solved in fewer search steps.

Figure 5 summarizes the basic ideas that underlie explanation-based learning. This approach
provides an important demonstration of the use of knowledge in learning, and the basic method
can be applied to any domain in which knowledge can be stated as monotonic production rules
(i.e., rules that only add knowledge). This includes problem-solving domains for which useful goal
decompositions are already known, as well as many reasoning tasks and design problems.

3.4.2 LEARNING MACRO-OPERATORS

Not all research on problem solving views this process in terms of and-or search. In contrast, some
work focuses on state-space search, in which one applies a sequence of operators to problem states
in order to achieve some desired state or goal. For example, in the blocks-world domain, states
and goals involve specific configurations of objects, whereas operators specify the preconditions and
results of actions that manipulate objects. Explanation-based methods can use knowledge of such
legal operators to construct general rules that increase problem-solving efficiency (Fikes, Hart, &
Nilsson, 1972).

The most basic application of explanation-based learning to state-space search is straightforward.
Once a problem-solving system has found a sequence of operators that transform an initial state
to a goal, one composes this solution path into a single rule or macro-operator (Fikes et al., 1972;
Iba, 1989). The conditions of this rule include all aspects of the initial problem state that were
required for the solution to hold, and the results include all those actions not undone by others
along the way. This composition process is more complex than the one described in Section 3.4.1
because operators can be nonmonotonic (i.e., they add and delete facts). However, it is simpler in
other ways because solution paths are sequential rather than tree structured.

The construction of macro-operators lets a problem solver take larger steps through a problem

space and thus shorten the effective length of solution paths. In contrast to inductive learning
methods, macro construction is a purely deductive process — the form of the new rule is completely
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Then OutletArea (X, AxN).
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Then Outputirea(X,7).

Isa(Fuel-Pump-1,Fuel-Pump).
Leaf nodes are immediately observable properties.

Figure 5. Schematic of the representation used by explanation-based generalization. Properties of an instance
(depicted as leaves in the figure) and domain knowledge encoded as rules (depicted in teletype font)
justify or ezplain other properties of the instance that may not be immediately observable. By
extracting the weakest preconditions under which this justification holds, one can construct rules
that are more general than the specific instance but more special than the general domain knowledge
rules (depicted below each domain knowledge rule in sans-serif font). These rules allow inferring a
non-observable property by testing only immediately observable properties of an instance.

determined by the primitive operators and their instantiations. Most work on discovering macro-
operators has focused on abstract tasks like the eight puzzle and the blocks world, but it should
apply to any task that can be cast in terms of state-space search. The same basic method also
applies to planning approaches, in which subgoals are created during the problem-solving process
(Minton, 1985).
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3.4.3 LEARNING PREFERENCE RULES FOR PROBLEM SOLVING

Another approach to explanation-based learning generates heuristics for problem solving. Although
early work on rule-based problem solving used domain-independent heuristics to select which state
to expand and which operator to apply during search, some recent learning research has focused on
the acquisition of domain-specific search control rules that conditionally prefer one state or operator
to another. In Section 3.3.1 we saw that one could use empirical methods to learn such heuristics,
but this task also fits the requirements of explanation-based methods,?> and more work on learning
search control has occurred within this paradigm.

In one version of this approach, a mean-ends planning system uses control rules to select a state
to expand, an operator to apply, and a binding for the variables in the operator (Minton, Carbonell,
Knoblock, Kuokka, Etzioni, & Gil, 1989). When no control rules are available, the problem solver
defaults to performing a depth-first search. When search leads to failure or success, the system
tries to explain that failure or success using general knowledge of problem solving. In both cases,
explanation-based learning compiles the and-or explanation into a control rule that the system
stores away for future use. This approach has been tested on a number of planning domains,
including moderately complex scheduling tasks.

In a related but somewhat different approach, new control rules are learned only when existing
control rules result in an ambiguous decision or impasse (Laird, Rosenbloom, & Newell, 1986). In
such cases, the problem-solving system searches to determine the correct answer and compiles the
result into a new control rule. Instead of using explicit knowledge about the operators themselves,
the conditions of the new control rule incorporate those facts that were used in determining the
correct decision, while its actions contain the results of the search. This approach has been tested
on a wide range of domains, including design, puzzle solving, and a computer configuration task
(Rosenbloom, Laird, McDermott, Newell, & Orciuch, 1985).

3.4.4 OPEN ISsSUES IN ANALYTIC LEARNING

Although there have been rapid advances in our understandmg of analytic approaches to learning,

there remain many sxgmﬁcant research issues. The current open problems ‘include:

e Incorrectand mcomplete knowledge Most existing analytic methods rely on a complete and cor-

rect knowledge, but this is seldom a realistic assumption. Researchers should develop methods
that behave robustly when some knowledge is missing or faulty (Laird, 1988; Smith, Winston,
Mitchell, & Buchanan, 1985).
o Ezrtending and revising knowledge. Another response to incomplete and incorrect domain
knowledge is to extend and revise the knowledge base (Carbonell & Gil, 1987; Muggleton &
'Buntine, 1988; Ourston & Mooney, 1990) ‘We need methods to detect such problems and alter
the knowledge base; note that this requires some form of inductive learning, though deduction
may also play a role.

2. In particular, preference rules are monotonric (i.e., they only add facts), so they may be acquired using explanation-
based methods.
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o Intractable knowledge. For useful learning to occur in this framework, the system must already
be able to tractably perform search, at least until sufficient knowledge is acquired to control
this search. Knowledge bases for some domains like chess are complete but intractable. What
types of methods can handle approximate knowledge bases (Tadepalli, 1989), and how can
this knowledge be used effectively? Some promising approaches include the use of abstraction
(Ellman, 1988; Knoblock, 1990).

¢ Nonlogical knowledge. Not all domain knowledge is logical in content; in some domains one must
rely on heuristic rules or probabilistic relations. Researchers should extend explanation-based
methods to use such knowledge to construct explanations and to generate useful rules.

o Fualuating alternative ezplanations. Given multiple proofs, a learning method must decide
which to compile into the knowledge base for future use. Researchers need to identify the
basis for judging an explanation’s quality, and they need to devise efficient implementation
techniques for this (Ng & Mooney, 1990).

o The utility problem. Having selected an explanation, a learning method must still determine
whether the resulting compiled rule is worth retaining. Additional knowledge can increase
retrieval costs and branching factors on future problems, and learning methods must decide
if the cost outweighs the benefit. Recent advances have focused on on simplifying compiled
rules (Keller, 1987; Minton, 1990), limiting the expressiveness of acquired knowledge (Tambe &
Rosenbloom, 1989), and collecting statistics on rule utility (Markovitch & Scott, 1989; Minton,
1990).

As with the other approaches to learning that we have examined, research on explanation-based
methods continues to make steady progress, but much more remains to be done.

3.5 Case-based Methods and Analogy

There is mounting evidence that human experts rely at least partly on memory for individual cases,
particularly in domains such as law, mathematics, design, and planning. Thus, it seems natural to
exploit this idea in constructing Al systems, using memory of specific cases to classify new cases
and to formulate plans. This is commonly called the case-based approach, and it constitutes a fifth
major paradigm of machine learning research. Work on reasoning by analogy also falls within this
general framework.

Unlike many other machine learning methods, a general theme of case-based methods is that
abstraction of prior experience primarily occurs in a lazy fashion. Rather than aggressively ab-
stracting or compiling experience in anticipation of future use, case-based methods typically save
the bulk of their processing until an actual use occurs for this experience. With this deferred pro-
cessing scheme, three fundamental issues arise: (a) retrieving case(s) that may help with a new
case, (b) matching and applying the retrieved case(s) to the new case, and (c) storing the outcome
of the new case for future use. Rather than discuss each of these issues separately, in this section
we review three subparadigms within the case-based paradigm and discuss the issues as they arise.

Now let us consider the placement of case-based methods on the dimensions of Section 2. This
framework represents individual experience either propositionally or with relational languages, al-
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Figure 6. Schematic of the representation used in a nearest neighbor learning method for the fuel-pump
domain. Instances are stored explicitly in a space of N dimensions, where each dimension describes
one feature of the instance. The figure depicts the two-dimensional case. To classify an instance,
one finds the nearest stored instance and predicts its class. It is possible to define a decision
boundary representing equal distance from stored instances of different classes (shown as a curved
line in the middle of the figure). Typically these decision boundaries are not stored explicitly.

thougihi the 1atter’a:re not as w:despread because of the undesxrable ma,tchmg corgplex:ty that may'
result. Like empirical learning methods, case-based methods have been applied to both classifi-
cation and problem-solving tasks; they have been applied in both supervised and unsupervised
learning situations; and they are predominantly incremental. Current case-based methods always

perform induction (usually at retrieval time), but many include an analytic component as well.

'In the sxmplest,vanant on the case-based framework one sxmply stores past msta,;lces verbatunh

When a new case is encountered, one ﬁnds the best match from among the stored instances, and
then uses that case to d_lrectly supply the missing information. For example, in a medlca.l diagnosis

domain, each case would consist of a patient’s symptoms'along with his disease. Given a new
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patient’s symptoms, this simple variant enumerates stored cases to find the ‘nearest neighbor’ and
uses its associated disease to predict the patient’s malady. Figure 6 illustrates the basic technique,
which originated in work on pattern recognition (Cover & Hart, 1967). Nearest neighbor algorithms
are not limited to classification domains, as shown in recent work using case-based techniques for
state-space problem solving (Bradtke & Lehnert, 1988).

Variants on this method are possible, such as expanding retrieval to making predictions based on
a weighted average using the K nearest neighbors. Applying this technique to the task of mapping
letters to phonemes achieves an 88% predictive accuracy on a test set of 1024 instances (Stanfill,
1987). The same research also demonstrates that this method degrades gracefully as one adds noise
and as one decreases the size of the case base.

Uncontrolled growth of the case base is a natural concern in this paradigm. Thus, one may want to
store cases selectively and delete others on occasion. In one instance of this approach, new cases are
stored only when the existing knowledge base leads to a classification error (Aha, Kibler, & Albert,
1991). Although relatively unsophisticated, the predictive accuracy of this approach compares,
favorably to methods for inducing decision trees, and a similar approach has been successfully
applied to the challenging domain of speech recognition (Bradshaw, 1987).

3.5.2 ANALOGICAL MATCHING

Given feature-based or attribute-based representations, the process of matching two cases is simple
and inexpensive. However, domains like planning and design require structural or relational rep-
resentations, and these introduce serious complexities into the match process. Since the new case
and the stored case are unlikely to match exactly, one must perform some form of partial matching,
and this problem is exponential (Watanabe & Rendell, 1990).

Researchers concerned with the process of analogy have devoted considerable attention to this
issue, with most approaches involving some form of heuristic search through the space of partial
matches. In this framework, the main issue becomes findings ways to constrain and direct the
search for a useful match. For instance, one approach finds mappings that preserve higher-order
relations between two cases in preference to ones that preserve simple features shared by the cases
(Falkenhainer, Forbus, & Gentner, 1989). Other researchers (e.g., Winston, 1984) have proposed
different but related methods. In a complementary vein, knowledge about the domain can help
evaluate potential matches and identify meaningful partial matches (Koton, 1988b).

3.5.3 INDEXING AND MEMORY ORGANIZATION

Even with selective storage of cases, complex real-world domains might require thousands of in-
stances, some having considerable structure that requires complex analogical matching. In such
situations, one cannot afford to exhaustively match against all cases stored in memory, and the ini-
tial storage and subsequent retrieval of relevant cases become central issues. The natural response
is to indez cases by appropriate features, thus making the retrieval process more selective and
reducing the effect of memory size. Early work on analogy focused on matching to the exclusion of
indexing issues, but this has changed in recent years.
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The first step in indexing cases involves selecting an appropriate set of indices. The programmer
can fix the indices at the outset, but this produces an inflexible system that cannot adapt to
new domains. Some researchers (e.g., Lebowitz, 1987) have invoked inductive learning methods to
identify predictive features, which are then used as indices. Others have used explanation-based
techniques to determine relevant features for each case and index on these instead. Problem-solving
domains are especially well-suited to the latter approach, since the trace of problem-solving behavior
(i.e., goal trees) provides ready-made information for explaining success or failure (Carbonell, 1986;
Hammond, 1986), which can then be used to index complex cases. The notion of “derivational
replay” (Mostow, 1989) based on such problem-solving traces has received attention in many circles,
including software engineering and automated VLSI design.

However, indexing by itself is not sufficient to allow efficient retrieval of relevant cases. For large
knowledge bases, one must also organize memory into some manageable structure. Discrimination
networks (Feigenbaum, 1963) are one approach to memory organization, but retrieval of a case
often depends on a conjunction of features being present. This leads to fragility in domains where
features can be missing, but the basic approach can be extended to support redundant indexing
(Kolodner, 1983; Lebowitz, 1987; Fisher, 1987). In addition, one can store abstract summary
descriptions at internal nodes in the network, giving generalization beyond individual cases. The
construction of ‘prototypes’ in this manner reveals an underlying similarity between case-based
learning and conceptual clustering, which we discussed in Section 3.3.3.

3.5.4 OPEN IssUEs IN CASE-BASED i’i’.&ﬁr&iﬁc

. rResea.rch on case-ba.sed approaches has led to a number of promising methods some of which ha.ve
been tested on challengmg domains. However, a number of open issues remain to be addressed:

. Selectmg indices. A number of methods ens§ for selectmg indices. However we need to identify
common processes that underhe these approaches and the common mformatlon they exploit

(Barelss Porter, & Weu, 1987; Ha.mmond 1986) We also need to better understa.nd methods
that generate indices dynamically (Barletta & Mark, 1988; Kolodner, 1989; Owens, 1989).

o Memory organization. Some initial work has addressed the organization of memory, but we
need to identify the general properties that a memory should exhibit, and to improve methods
for dynamically reorganizing rnemory as new cases are encountered (Kolodner, 1983).

o Matching metrics. Many existing techniq’ueeemploy ad hoc schemes for matching against cases
in memory. Researchers need to search for underlying principles involved in determining a good
match and to develop methods for pred1ctmg good matches (Kolodner, 1989; Koton, 1988a;
Sa.lzberg, 1990) -

o Multiple cases. Analogy has predommantly focuseé[ on using sophisticated information from a
single case, whereas K nearest-neighbor methods illustrate how to use simple information from
multiple cases. Some early work has focused on combining highly relevant but contrasting cases
(Ashley & Rissland, 1988), but we need to identify other types of mformatxon that multiple
cases can provide (Aha & Kibler, 1990; Redmond, 1990).
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e Connections among cases. In some domains, each case may have a complex, internal structure,
effectively consisting of many component cases. Researchers should devise principled represen-
tational schemes that can capture connections between component cases and find methods for
efficiently storing and retrieving such structures (Jones, 1989; Redmond, 1990; Sycara, 1988).

o Forgetting. Although most cases are useful, storage of all cases can lead to overfitting effects
in noisy domains. We need techniques that can efficiently determine when to forget cases
(Aha, Kibler, & Albert, 1991). An alternative is to develop methods that selectively acquire
knowledge, thereby limiting the discovery of useless cases and unnecessary processing (Hunter,
1990).

Work on case-based reasoning has produced some promising techniques, but researchers need to
more fully explore the space of such methods, and to carefully evaluate alternative approaches in
terms of their performance on real-world domains.

3.6 Relationships among the Paradigms

Historically, machine learning researchers have emphasized differences among the five paradigms
we have discussed, rather than their similarities. This trend has been encouraged by differences
in terminology, notation, test cases, and methods of evaluation. For instance, researchers studying
connectionist techniques, genetic algorithms, and rule induction often run experiments with their
inductive methods, but they typically use different data sets and measure different aspects of
learning behavior. The same problem occurs between workers in the explanation-based and case-
based paradigms. Our discussion so far has reflected this trend, focusing on the differences between
the five learning frameworks.

However, understanding the similarities among these paradigms is equally important to the
science of machine learning. To this end, let us briefly consider some possible connections:

o Symbolic and subsymbolic induction. Many distinguish the “subsymbolic” approach of con-
nectionist and genetic algorithms from the “symbolic” approach taken by empirical methods
for rule induction and decision-tree construction. But despite differences in the representation
of acquired knowledge, the spaces searched, and the learning operators employed, all three
approaches are inductive in nature, and one can generally apply them to the same learning
tasks. Recent comparative studies have clarified this fact (Mooney, Shavlik, Towell, & Gove
1989; Dietterich, Hild, & Bakiri, 1990), producing comparable results for a variety of methods.

o Induction and ezplanation. Researchers often make a dichotomy between inductive (e.8., empir-
ical) methods and analytic (e.g., explanation-based) ones, characterizing the former as “knowl-
edge lean” and the latter as “knowledge intensive.” Yet there is nothing mutually exclusive
about these approaches, and hybrid methods should prove better than either in isolation. For
instance, recent work on empirical methods has shown that domain knowledge and deduction
can improve learning (Drastal et al., 1989; Elio & Watanabe, in press). Similarly, one can
use empirical methods to extend incomplete domain knowledge and to revise incorrect rules
(Carbonell & Gil, 1987; Ourston & Mooney, 1990).

]
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o Ezxplanations and cases. We have seen that explanation-based methods use domain knowl-
edge to construct explanations and compile rules, but some case-based techniques rely just as
heavily on domain expertise (Braverman & Wilensky, 1990; Redmond, 1989). Although one
approach stores general rules and the other stores specific cases, the reasoning pfocesses can
be remarkably similar.

e Cases and abstractions. Researchers often emphasize the distinction between storing specific
cases and forming abstractions. Yet many case-based systems create abstractions as indices
for cases (Kolodner, 1983; Fisher, 1987), making them more accurately described as hybrids.
Nor must a system that stores cases always use them during performance; in some situations, a
hybrid system may prefer to use an abstraction (Fisher, 1989). Moreover, work on conceptual
clustering and on case-based learning shares a concern with the organization of memory, relying
on similar structures and mechanisms.

In summary, there is considerable overlap between the paradigms in both their concerns and their
approaches, although this is seldom apparent from research papers. Machine learning has just
begun to converge on a set of standard terms and notations for descnbmg systems, and on a set of
standard testbeds and experimental methodologies for evaluating syst R

As researchers start to con commumcate across paradfgm Eounda.nes, they can Begm exploring the
“relationships more seriously. For instan

nore seriously. For instance, one can imagime a unified theory of induction that
explains the behavior of decision-tree methods, genetic algfointhms and connectionist networks,
and that predJcts the conditions under which each method would be most sppropnate One can
also expect the development of hybrid algonthms that cut acToss pa.radxgms to achieve better results
than either in isolation. Some research along these lines has already begun, such as recent work
on combining decision trees with perceptrons (Utgoﬁ' 1988). We hope that some researchers will
concentrate their efforts on such cross-paradigm research, since this may lead to new techniques that

_otherwise m.lght never come to light. If such systems werefsuqcessﬁﬂ this would further strengthen
the ties between areas, uIthately transforming machine learning into a unified field rather than

one composed of many subdisciplines.

4.7M7éthoﬁdological VDe\irél’opx'xiérrlts in Machine Leaﬁiing

Machine learning is a scientific discipline, and thus careful methodological foundations are essential
to its success. Over the past few years, some significant methodological advances have occurred in
the field, paving the way for more careful work in the future. These include new techniques for the
formal analysis of learning algorithms, new experimental approaches to studying learning, success-
ful applications to real-world domains, and the he development of integrated cognitive architectures.

These changes bode de well for th1s emergmg subﬁeld of artxﬁcxal mte]].lgence, and we d1scuss each of

“them briefly below. ~—
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4.1 Theoretical Analyses of Learning Algorithms

Although formal studies of inductive inference have a long history in computer science (Angluin
& Smith, 1983), only recently have theorists started to address issues of concern to researchers
who actually build machine learning systems. Initial ideas focused on the notion of convergence:
Would the learning method eventually construct the exact knowledge desired (Gold, 1967)? This
approach constituted an important first step, but it did not afford much insight into realistic
learning problems.

A major breakthrough came when researchers turned their focus to the question of evaluating
the quality of inductively learned knowledge. The notion of probably approzimately correct (PAC)
learning forwarded the idea that learned knowledge should usually be relatively accurate when
applied in novel situations. Coupling this idea with computational feasibility yields a definition
for problems that are polynomially learnable: (a) it must not require too many instances to learn,
(b) there must exist an efficient learning method which can produce PAC knowledge, and (c) it
must be possible to efficiently determine whether knowledge is consistent with any given instance
(Blumer, Ehrenfeucht, Haussler, & Warmuth, 1987).

When studying the learnability of a particular problem, one common research tactic is to show
that one of the three criteria cannot be met. However, because each of these three criteria depends
on how acquired knowledge is represented, results of negative learnability can be brittle. For
instance, learning K of N functions using a linear threshold unit with only zero or one weights
is not polynomially learnable, but the same class of functions are learnable if the linear threshold
unit can use integer weights (Haussler, 1990).

The initial theoretical frameworks focused on learning logical, feature-based concepts in a su-
pervised setting (Kearns, Li, Pitt, & Valiant, 1987), but researchers have since extended the ba-
sic framework to other paradigms, including structural concepts (Haussler, 1987), decision lists
(Rivest, 1987), conceptual clustering (Pitt & Reinke, 1988), and connectionist networks (Valiant,
1988). They have also addressed learning in the presence of noise (Angluin & Laird, 1988), and
they have moved beyond inductive methods to deal with explanation-based methods (Natarajan
& Tadepalli, 1988). Even many nontheorists follow this work closely, and many theorists actively
read the empirical literature in search of challenging problems.

4.2 Experimental Studies of Learning Algorithms

Despite progress on the theoretical front, many learning algorithms remain too complex for formal
analysis, and recent progress has also been made in the experimental study of learning methods
(Kibler & Langley, 1988). Much of the experimental work has focused on inductive methods
(Fahlman, 1988; Fisher, 1987; Quinlan, 1986b; Schlimmer, 1987), but there are also a growing
number of experimental studies of explanation-based techniques (Minton et al., 1989; Shavlik,
1990).

One important insight is that performance is the natural dependent measure for such empirical
studies, since one can define learning as improvement in performance. There are many measures
of performance, including classification accuracy, quality of solution paths, and even CPU tife.
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Different measures are appropriate for different domains and different learning methods, since they
may have different goals. However, having at least some measure of performance is essential to
evaluating a learning system’s behavior. In some cases, intuitively plausible learning methods
actually lead to worse performance (Minton, 1985). In other cases, one can use performance
measures to determine which components significantly aid the learning process (Schlimmer, 1987).

Researchers have also started to carefully examine the aspects of domains that affect learning
behavior. Some experimental studies have focused on naturalistic data in order to show real-world
relevance, but others have constructed synthetic domains to allow control of domain characteristics.
Two obvious features include complexity of the knowledge to be learned and amount of noise in the
data, but others certainly exist. The important point is that many researchers now realize that, in
order to make progress, the field requires some explicit methods for evaluating alternative methods
and for identifying the conditions under which they work well. Theoretical analyses provide one
route to such understanding, but systematic experimentation is another important path.

4.3 Common Testbeds and Applications

Early research in machine learning focused on idealized, hand-crafted examples, and researchers
often tested their systems on only a handful of cases. This has changed drastically in recent years,
and papers in the literature now commonly report results on realistic learning tasks that involve
many test cases. Moreover, researchers typically report results on a number of different data sets,
to show the robustness and generality of their algorithms. The average number of test domains
should increase as the standards of the field become higher.

Another encouraging sign is that researchers are starting to test their algorithms on the same
task domains, allowing comparisons to be made. This trend has been aided by the collection and
distribution of standard data sets. For instance, data on soybean diseases (Michalski & Chilausky,
1980), thyroid diseases (Quinlan, 1987), edibility of mushrooms (Schlimmer, 1987), and Congres-
sional voting records (Fisher, 1987) have been widely distributed and used in testing a number of
learning algorithms. Major repositories have emerged, with researchers collecting, documenting,
and distributing benchmark data sets. Many of these deal with classification and diagnosis, but
standard problem-solving and reasoning tasks are also beginning to emerge.

Despite these encouraging developments, most of these real-world domains remain relatively sim-
ple and straightforward. We hope that future application efforts will tackle more difficult testbeds

that provxde greater challenges for machme learnmg methods ‘We also hope the trend ‘will expand

to include the documentation and dxstnbutxon of pubhshed algonthms so that researchers can
employ each others’ software. This has started to occur w1thm some machine learning paradigms,
7but more ,remams to be done, = - T SLoLET o e :

4.4 Integrated Cognitive Architectures

Another methodological advance relates to the development of integrated architectures for cog-
nition. Early AI researchers commonly implemented a separate system for each new task they
encountered. As the field gained experience, high-level languages (e.g., production systems) were
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developed and used to implement new systems, with considerable savings in time and effort. How-
ever, these languages incorporated only minor theoretical commitments about the nature of intel-
ligent behavior, and thus provided few constraints on the resulting AI systems. For instance, few
formalisms included any automated learning mechanisms.

This trend has changed in recent years, with many researchers now turning to integrated archi-
tectures that make strong assumptions about the control structures needed to support intelligence.
SOAR is a prime example of this approach (Laird et al., 1986), and the classifier systems of the
genetic algorithm community constitute another instance. Most work in this growing movement
includes some automated learning mechanism as an integral part of the architecture, and gener-
ality is a central concern, with researchers testing their frameworks on a variety of domains. For
instance, the PRODIGY (Minton et al., 1989) and THEO (Mitchell, Allen, Chalasani, Cheng, Etzioni,
Ringuette, & Schlimmer, in press) architectures incorporate explanation-based methods into their
problem-solving engines, whereas ICARUS (Langley, Thompson, Iba, Gennari, & Allen, in press)
relies on case-based concept formation as its main learning mechanism, and DYNA (Sutton, 1990)
uses connectionist learning methods. Such integrated frameworks will be necessary if we ever hope
to construct intelligent artifacts that can interact with the physical world, and we predict that
learning will occupy a central role in successful cognitive architectures.

5. Summary

Over the last decade, the theoretical and methodological advances described in the previous sections
have transported machine learning from the sidelines of AI into one of its central foci. Along with
this shift has come increased contact with other subcommunities, and as methods for machine
learning become more robust, they are gaining increased attention from researchers concerned with
planning, diagnosis, natural language, and other problem-oriented areas of artificial intelligence. In
turn, these domains provide significant real-world challenges for scientists who have traditionally
been concerned with abstract issues in machine learning.

Without doubt, the growing concern with applications will reveal limitations of the existing
paradigms and suggest novel directions for automating the acquisition of knowledge. Thus, re-
searchers will be forced to devise new representations, search frameworks, and control schemes to
support the learning process. The resulting approaches may initially be domain specific, inefficient,
and inelegant, but they will respond to issues that have been previously ignored. Such learning
methods may not fit nicely into the organization we have presented, but that is often the nature of
scientific progress.

At the same time, others will continue to pursue basic research on learning mechanisms, driven
by recognized open issues like those we listed above. These scientists will explore variations and
hybrids of existing methods, propose frameworks that unify apparently different techniques, and
carry out experimental and theoretical studies to identify the behavior of alternative methods
under varying conditions. They should also begin to relate experimental results to those predicted
by theory, revising the theory when necessary. Finally, they will attempt to identify new dimensions
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and new themes that have emerged from the applied work, idealizing them in ways that lets them
be studied in the same manner as existing paradigms.

Taken together, basic and applied research in this area should continue to improve the range and
capabilities of learning algorithms, and to increase our understanding of mechanisms for improving
performance with experience. These advances in turn will have far-ranging implications for the
rest of artificial intelligence, letting the field move beyond static systems to ones that change their
behavior over time as they acquire and refine knowledge.
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